- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Doyle, Scott_James (1)
-
Foster, John_E (1)
-
Walker, Roxanne_Zita-Pinsky (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Enhancing mass transport of reactive species and photons at the plasmaliquid interface is an important consideration for the scaling of atmospheric pressure plasmas studied in the laboratory to real-world applications. It is well-known that the introduction of turbulence at any interface will enhance mixing by enhancing species uptake from the gas phase to the liquid phase by surface renewal processes, entrainment, bubbles and surface area modification. The goal of this work is to isolate surface effects associated with turbulence from the multitude of turbulent transport enhanced processes by artificially introducing surface perturbations using Faraday waves. Experiments were also conducted to determine decoloration rate constants of a model contaminant (methylene blue) as a function of both discharge features and hydrodynamics (Faraday surface wavelengths). The local plasma ionization wave at the interfacial structure was modeled and compared to experiments. Interestingly, it was found in experiments that plasma in contact with the water also generated capillary waves thus modifying the surface as well. Plasma ionization waves in combination to acoustic driven Faraday waves adds to the complexity of interpreting the effects of, for example, surface area increases, due to these complex coupled phenomenon. Local plasma ionization wave structure appears to be modified (increased propagation distance) when the liquid is perturbed, leading to increased contact of the liquid water surface with reactive species. Along with interfacial surface area growth, nonlinear convective transport is also increased with perturbations, leading to the general realization that acoustic perturbations can improve transport and thus decoloration of the model contaminant dye.more » « less
An official website of the United States government
